• <code id="8ismm"></code>
  • 威海财经网 资讯 银行 保险 房产 汽车 企业 科技 教育 健康 文化 区域 投资 专题

    登陆 | 注册 | 手机版 | RSS

    首页 > 教育 > 教学资源 > 正文

    初中数学知识点(5)

    加入收藏 2016-06-22 11:18:10 0 /
    二次根式 一元二次根式 旋转 圆
    第一章 二次根式
    一.知识框架
      
    二.知识概念
    二次根式:一般地,形如√ā(a≥0)的代数式叫做二次根式。当a>0?#20445;?radic;a表示a的算数平方根,其中√0=0
    对于本章内容,教学中应达到以下几方面要求:
    1. 理解二次根式的概念,了解被开方数必须是非负数的理由;
    2. 了解最简二次根式的概念;
    3. 理解并掌握下列结论:
    1)是非负数?#24359;。?)?#24359;。?)
    4. 掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;
    5. 了解代数式的概念,进一?#25945;?#20250;代数式在表示数量关系方面的作用。
     
    第二章  一元二次根式
    一.知识框架
     
    二.知识概念
    一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
        一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这?#20013;?#24335;叫做一元二次方程的一般形式.
    一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
    本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。
    (1)运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.
    (2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项?#39057;?#21491;边;方程两边?#25216;由?#19968;次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.
    介绍配方法?#20445;?#39318;先通过实际问题引出形如的方程。这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。进而举例?#24471;?#22914;何解形如的方程。然后举例?#24471;?#19968;元二次方程可以化为形如的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。
    (3)一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:
        解一元二次方程?#20445;?#21487;以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0?#20445;?将a、b、c代入式子x=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘?#20581;?#24320;方,这体现了公式的统一性与和谐性。)这个式子叫做一元二次方程的求根公式.利用求根公式解一元二次方程的方法叫公式法.
     
    第三章  旋转
    一.知识框架
     
     
    二.知识概念
    1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转?#24688;#?#22270;形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。) 
    2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。
    3.中心对称图形与中心对称:
    中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那?#27425;?#20204;就说,这个图形成中心对称图形。
    中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那?#27425;?#20204;就说,这两个图形成中心对称。
    4.中心对?#39057;?#24615;质:
    关于中心对?#39057;?#20004;个图形是全等形。
    关于中心对?#39057;?#20004;个图形,对称点连线都经过对称中心,并且被对称中心平分。
    关于中心对?#39057;?#20004;个图形,对应线段平行(或者在同一直线上)且相等。
       本章内容通过让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察,培养几何思维和审美意识,在实际问题中体验数学的快乐,激发对学习学习。
     
    第四章  圆
    一.知识框架
    \
     
     
    二.知识概念  
    1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
    2.圆弧和陷:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做?#26412;丁?br /> 3.圆心角和圆周角:顶点在圆心上的角叫做圆心?#24688;?#39030;点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周?#24688;?br /> 4.内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
     5.扇形:在圆上,由?#25945;?#21322;径和一?#20301;?#22260;成的图形叫做扇形。
     6.圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。
     7.圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。
     8.直线与圆有3种位置关系?#20309;?#20844;共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线?#24418;?#19968;公共点为相?#26657;?#36825;条直线叫做圆的切线,这个唯一的公共点叫做切点。
    9.两圆之间有5种位置关系?#20309;?#20844;共点的,一圆在另一圆之外叫外离,在之内?#24515;?#21547;;?#24418;?#19968;公共点的,一圆在另一圆之外叫外?#26657;?#22312;之内?#24515;誶校?#26377;两个公共点的叫相?#24359;?#20004;圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P?#21644;?#31163;P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。
    10.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
    11.切线的性质?#28023;?)经过切点垂直于这条半径的直线是圆的切线。
                                 (2)经过切点垂直于切线的直线必经过圆心。
                                  (3)圆的切线垂直于经过切点的半径。
    12.垂径定理:平分弦(不是?#26412;叮?#30340;?#26412;?#22402;直于弦,并且平分弦所对的?#25945;?#24359;。
    13.有关定理:
    平分弦(不是?#26412;叮?#30340;?#26412;?#22402;直于弦,并且平分弦所对的?#25945;?#24359;.
    在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
      在同圆或等圆中,同弧?#28982;?#25152;对的圆周角相等,都等于这条弧所对的圆心角的一半.
      半圆(或?#26412;叮?#25152;对的圆周角是直角,90°的圆周角所对的弦是?#26412;叮?br /> 14.圆的计算公式  1.圆的周长C=2πr=πd
                                         2.圆的面积S=πr^2
                                        3.扇形弧长l=nπr/180
    15.扇形面积S=π(R^2-r^2) 5.圆锥侧面积S=πrl 
    相关热词搜索:知识点 初中 数学
    江苏11选5开奖直播